Indian Statistical Institute Mid-Semestral Examination 2003-2004 B.Math I Year II Semester Mathematical Analysis II Date:08-03-04

Time: 3 hrs

Max. Marks : 35

Answer all the questions

1. a) Let (X, d) be a metric space. y_1, y_2, y_3, \ldots is a sequence in X converging to y_0 . Let $K = \{y_0, y_1, y_2, \ldots\}$. Show that K is a compact set. [3]

b) Let $f: (X, d) \to (Y, m)$ be any function between metric spaces. If the restriction of f to *each* compact set is continuous show that f is continuous. [2]

- 2. Let $f: (0,1) \to R$ be given by $f(x) = \sin \frac{1}{x}$. Show that f is not uniformly continuous. [Hint: If $x_n = \frac{1}{2n\pi}$ and $y_n = \frac{1}{2n\pi + \frac{\pi}{2}}$, what is $f(x_n), f(y_n)$]? [2]
- 3. a) Define $g: [0,1] \to R$ by $g(x) = x \sin \frac{1}{x}$ for $x \neq 0$, g(0) = 0. Show that g is continuous on [0,1] [3]
 - b) Is g uniformly continuous? give reason. [1]
- 4. a) Let f : (X, d) → (Y, m) be uniformly continuous. Let Z ⊂ X. Show that the restriction of f to Z is uniformly continuous [1]
 b) Let f : R → R be any continuous function f need not be uniformly

b) Let $f: R \to R$ be any continuous function f need not be uniformly continuous. For any bounded subset B of R, show that the restriction of f to B is uniformly continuous. [3]

- 5. a) Let (X, d) be a metric space. $A_1, A_2, A_3, \ldots A_k$ are connected subsets of X such that for each $i = 1, 2, \ldots, k - 1$, one has $A_i \cap A_{i+1} \neq \text{empty}$ show that $A_1 \cup A_2 \cup \ldots \cup A_k$ is connected [3]
- 6. Let A, B, C4 be subsets of R^2 given by

$$A = \{(x, y) \in R^2 : (x - 2)^2 + y^2 = 4\}$$

$$B = \{(x, y) \in R^2 : (x + 1)^2 + y^2 = 1\}$$

$$C = \{(x, y) : y = 0, -1 \le x \le 0\}$$

Show that $A \cup B \cup C$ is connected.

[2]

7. a) Let (X, d) be a metric space. Let S be a connected subset of X. Let $S \subset T$. Assume that for each t in T, there exists a sequence $s_1, s_2, \ldots, s_n, \ldots$ in S such that $s_n \to t$. Show that T is connected [3] b) Let $A, B \subset \mathbb{R}^2$ be given by

$$A = \{(x, y) : x > 0, y > 0\}$$

$$B = \{(k, 0) : k = 1, 2, 3, \ldots\}$$

Show that A and $A \cup B$ are connected

8. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x_1, x_2) = x_1^2 + \sin x_2$. a) Calculate $\frac{\partial f}{\partial x_1}$, $\frac{\partial f}{\partial x_2}$. Show that both are continuous functions; $R^2 \to R$ [4]b) Show that f has total derivative $f'(\stackrel{x}{\sim})$ for each $\stackrel{x}{\sim}$ and find it.

[2]

c) Let $\stackrel{u}{\sim}=(1,1)$. show that $g \stackrel{x}{\sim}=f'(\stackrel{x}{\sim},\stackrel{y}{\sim})$, the directional derivative of f along the direction $\stackrel{u}{\sim}$ at $\stackrel{x}{\sim}$, exists and $g: R^2 \to R$ is a continuous function. [2]

[4]